Maths for Computing Assignment 1

1. (5 *marks*) Construct a truth table for the following compound propositions. a) $p \rightarrow (\neg q \lor r)$

Solution:

p	q	r	$\neg q$	$\neg q \lor r$	$p \to (\neg q \lor r)$
F	F	F	Т	Т	Т
F	F	Т	Т	Т	Т
F	T	F	F	F	Т
F	Т	Т	F	Т	Т
T	F	F	Т	Т	Т
T	F	Т	Т	Т	T
T	T	F	F	F	F
Τ	Т	Т	F	Т	Т

b)
$$(p \to q) \lor (\neg p \to r)$$

Solution:

p	q	r	$\neg p$	$p \rightarrow q$	$\neg p \rightarrow r$	$(p \to q) \lor (\neg p \to r)$
F	F	F	Т	Т	F	Т
F	F	Т	Т	T	Т	Т
F	T	F	Т	Т	F	T
F	Т	Т	Т	Т	Т	T
T	F	F	F	F	Т	Т
T	F	Т	F	F	Т	T
		F	F	T	T	Т
Т	Т	Τ	F	Т	Т	Т

2. (5 *marks*) Write each of these statements in the form "if p, then q" in English.

a) I will remember to send you the address only if you send me an e-mail message. **Solution:**

If I remember to send you the address, then you send me an e-mail message.

b) To be a citizen of this country, it is sufficient that you were born in the United States. **Solution:**

If you were born in the US, then you are a citizen of the country.

c) If you keep your textbook, it will be a useful reference in your future courses.

Solution:

If you keep your textbook, then it will be a useful reference in your future courses.

d) The RedWings will win the Stanley Cup if their goalie plays well.

Solution:

If RedWings' goalie plays well, then the RedWings will win the Stanley Cup.

e) That you get the job implies that you had the best credentials.

Solution:

If you get the job, then you had the best credentials.

Note: Solutions are not direct replacement of *p* and *q* from the given statements in "if *p*, then *q*" form. This is done to make sure that the grammar is correct. The intention behind this exercise was to check whether you understand $p \rightarrow q$ in different forms. Therefore, if you have correctly spotted *p* and *q* in the sentences, you will get full marks even if your sentence is not grammatically correct.

3. (5 *marks*) Show that the following pairs are logically equivalent.

a) $(p \rightarrow q) \land (p \rightarrow r)$ and $p \rightarrow (q \land r)$

Solution:

Both compound propositions are logically equivalent because their truth values are the same for all possible truth values of atomic propositions as shown in the below truth table.

р	q	r	$p \rightarrow q$	$p \rightarrow r$	$q \wedge r$	$(p \to q) \land (p \to r)$	$p \to (q \wedge r)$
F	F	F	Т	Т	F	Т	Т
F	F	Т	T	Т	F	Т	Т
F	Т	F	Т	Т	F	Т	Т
F	Т	Т	Т	Т	Т	Т	Т
T	F	F	F	F	F	F	F
T	F	Т	F	Т	F	F	F
T	T	F	T	F	F	F	F
Т	Т	Т	Т	Т	Т	Т	Т

b) $\neg p \rightarrow (q \rightarrow r)$ and $q \rightarrow (p \lor r)$

Solution:

Both compound propositions are logically equivalent because their truth values are the same for all possible truth values of atomic propositions as shown in the below truth table.

p	q	r	$p \lor r$	$q \rightarrow r$	ר p	$\neg p \rightarrow (q \rightarrow r)$	$q \to (p \lor r)$
F	F	F	F	Т	Т	Т	Т
F	F	Т	Т	Т	Т	Т	Т
F	T	F	F	F	Т	F	F
F	T	Т	Т	Т	Т	Т	Т
T	F	F	Т	Т	F	Т	Т
T	F	Т	Т	Т	F	Т	Т
	T	F		F	F	Т	Т
T	Т	Т	Т	Т	F	Т	Т

4. (5 marks) A collection of logical operator is called functionally complete if every compound proposition is logically equivalent to a compound proposition involving only these logical operators. Show that \neg and \land form a functionally complete collection of logical operator.

Solution: It is sufficient to show that $p \lor q$, $p \to q$, and $p \leftrightarrow q$ can be expressed using p, q, \neg , and \wedge . In other words, we need to form compound propositions using p, q, \neg , and \wedge that are equivalent to $p \lor q$, $p \to q$, and $p \leftrightarrow q$, respectively.

Here are they: 1. $p \lor q \equiv \neg(\neg p \land \neg q)$ 2. $p \rightarrow q \equiv \neg(p \land \neg q)$ 3. $p \leftrightarrow q \equiv \neg(p \land \neg q) \land \neg(q \land \neg p)$

You should also show the logical equivalence of all three pairs using truth table or without using it. I am leaving that here.

Note: There can be multiple answers, but, if you have given correct logical equivalent compound propositions and shown their logical equivalence, your answer is correct.

5. (7.5 (= 2.5 + 5) marks) Show that the following pairs are logically equivalent without using truth table.

a) $\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$ Solution: $\neg (p \lor (\neg p \land q))$ $\equiv \neg ((p \lor \neg p) \land (p \lor q))$ (Distributive law) $\equiv \neg (T \land (p \lor q))$ (Negation law) $\equiv \neg ((p \lor q) \land T)$ (Commutative law) (I hope you did not forget this step. :)) $\equiv \neg (p \lor q)$ (Identity law) $\equiv \neg p \land \neg q$ (De Morgan's law)

b) $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r) \equiv T$

Solution: (This turned out to be a lot more difficult than I expected. Kudos to those who correctly solved it. Since this is extremely lengthy, I will be skipping a few obvious steps or apply more than one rule of inference in one step.)

$$\begin{array}{l} ((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r) \\ \equiv ((\neg p \lor q) \land (\neg q \lor r)) \rightarrow (\neg p \lor r) \quad (\text{Using } p \rightarrow q \equiv \neg p \lor q) \\ \equiv \neg ((\neg p \lor q) \land (\neg q \lor r)) \lor (\neg p \lor r) \quad (\text{Using } p \rightarrow q \equiv \neg p \lor q) \\ \equiv ((p \land \neg q) \lor (q \land \neg r)) \lor (\neg p \lor r) \quad (\text{De Morgan's law}) \\ \equiv (((p \land \neg q) \lor (q \land \neg r)) \lor \neg p) \lor r \quad (\text{Associative law}) \\ \equiv ((\neg p \lor ((p \land \neg q) \lor (q \land \neg r))) \lor r \quad (\text{Commutative law}) \\ \equiv (((\neg p \lor (p \land \neg q)) \lor (q \land \neg r)) \lor r \quad (\text{Distributive law}) \\ \equiv (((\neg p \lor p) \land (\neg p \lor \neg q)) \lor (q \land \neg r)) \lor r \quad (\text{Distributive law}) \\ \equiv (((\neg p \lor \neg q)) \lor (q \land \neg r)) \lor r \quad (\text{Negation law}) \\ \equiv ((\neg p \lor (\neg q \lor (q \land \neg r))) \lor r \quad (\text{Identity law}) \\ \equiv (\neg p \lor ((\neg q \lor q) \land (\neg q \lor \neg r))) \lor r \quad (\text{Distributive law}) \\ \equiv ((\neg p \lor (\neg q \lor (q \land \neg r))) \lor r \quad (\text{Negation law}) \\ \equiv ((\neg p \lor (\neg q \lor \neg r))) \lor r \quad (\text{Identity law}) \\ \equiv ((\neg p \lor (\neg q \lor \neg r))) \lor r \quad (\text{Identity law}) \\ \equiv ((\neg p \lor \neg q) \lor \neg r) \lor r \quad (\text{Associative law}) \\ \equiv ((\neg p \lor \neg q) \lor (\neg r \lor r) \quad (\text{Identity law}) \\ \equiv (\neg p \lor (\neg q \lor (\neg r \lor r) \land (\text{Identity law}) \\ \equiv (\neg p \lor (\neg q) \lor \neg r) \lor r \quad (\text{Negation law}) \\ \equiv (\neg p \lor \neg q) \lor (\neg r \lor r) \quad (\text{Identity law}) \\ \equiv (\neg p \lor \neg q) \lor (\neg r \lor r) \quad (\text{Identity law}) \\ \equiv (\neg p \lor \neg q) \lor (\neg r \lor r) \quad (\text{Identity law}) \\ \equiv (\neg p \lor \neg q) \lor T \quad (\text{Negation law}) \\ \equiv T \quad (\text{Domination law}) \end{aligned}$$

6. (5 marks) Show that the following pairs are not logically equivalent

a) $\exists x P(x) \rightarrow \exists x Q(x)$ and $\exists x Q(x) \rightarrow \exists x P(x)$

Solution:

Let P(x) = x is a prime number, Q(x) = x is a composite number, and domain be the set of prime numbers. Since $\exists x P(x)$ is true and $\exists x Q(x)$ is false, $\exists x P(x) \rightarrow \exists x Q(x)$ is false but $\exists x Q(x) \rightarrow \exists x P(x)$ is true.

b) $\forall x P(x) \lor \forall x Q(x)$ and $\forall x (P(x) \lor Q(x))$

Solution:

Let P(x) = x is a prime number, Q(x) = x is a composite number, and domain be the set of positive integers. Since every positive integer is either a prime or a composite, $\forall x(P(x) \lor Q(x))$ is true. But, $\forall x P(x)$ is false because not all positive integers are prime and $\forall x Q(x)$ is false because not all positive integers are composite. Hence, $\forall x P(x) \lor \forall x Q(x)$ is false as well.

Note that to show that they are not logically equivalent you need to choose predicates and domain for which both WFFs of a pair have opposite truth value. You should choose exactly one domain for a variable that is present in both WFFs.

7. (*3 marks*) Find the truth value of the following propositions where the domain is the set of positive integers. Justify your answer briefly.

a)
$$\forall x \exists y (x = 1/y)$$

Solution:

This is false. For x = 2, there is no *y* such that x = 1/y, because for every *y* in the domain $1/y \le 1$.

b) $\forall x \exists y(y^2 - x < 100)$

Solution:

This is true. First rearrange the inequality and form an equivalent proposition $\forall x \exists y(y^2 - 100 < x)$. This proposition is true because for every positive integer *x*, there exists a *y*, say y = 1, for which the inequality is true as the LHS is a negative number.

c) $\forall x \forall y (x^2 \neq y^3)$ Solution: This is false. Take x = 8 and y = 4. Or simply x = y = 1.

8. (*10.5* (= 3.5 * 3) *marks*) Show that the following arguments are valid. (Write all the steps with reasons.)

a) Premises: $p \to (\neg r \to \neg q)$, $\neg r$. Conclusion: $\neg (p \land q)$

Solution:

$1. p \to (\neg r \to \neg q)$	(Premise)
2. $\neg p \lor (\neg r \to \neg q)$	$(\operatorname{Using} p \to q \equiv \neg p \lor q \text{ on } 1)$
3. $\neg p \lor (r \lor \neg q)$	$(\operatorname{Using} p \to q \equiv \neg p \lor q \text{ on } 2)$
4. $(\neg p \lor r) \lor \neg q$	(Associative law on 3)
5. $(r \lor \neg p) \lor \neg q$	(Commutative law on 4)
6. $r \lor (\neg p \lor \neg q)$	(Associative law on 5)
7. ¬ <i>r</i>	(Premise)
8. $\neg p \lor \neg q$	(Disjunctive syllogism on 6 and 7)
9. $\neg (p \land q)$	(De Morgan's law on 8)

b) Premises: $(p \lor (q \lor r)) \land (p \leftrightarrow s), q \rightarrow t, t \rightarrow \neg q$. Conclusion: $p \lor r$ Solution:

1. $(p \lor (q \lor r)) \land (p \leftrightarrow s)$	(Premise)
2. $p \lor (q \lor r)$	(Simplification on 1)
3. $(p \lor q) \lor r$	(Associative law on 2)
4. $(q \lor p) \lor r$	(Commutative law on 3)
5. $q \lor (p \lor r)$	(Associative law on 4)
6. $q \rightarrow t$	(Premise)
7. $\neg q \lor t$	$(\text{Using } p \to q \equiv \neg p \lor q)$
8. $t \rightarrow \neg q$	(Premise)
9. $\neg t \lor \neg q$	$(\text{Using } p \to q \equiv \neg p \lor q)$
10. $t \vee \neg q$	(Commutative law on 7)
11. $\neg q \lor \neg q$	(Resolution on 9 and 10)
12. ¬ <i>q</i>	(Idempotent law on 11)
13. $p \lor r$	(Disjunctive syllogism on 5 and 12)

c) Premises: $\forall x (P(x) \lor Q(x)), \forall x ((\neg P(x) \land Q(x)) \rightarrow R(x)).$

Conclusion: $\forall x (\neg R(x) \rightarrow P(x))$ (Domain for all quantifiers are the same.) **Solution:**

1. $\forall x (P(x) \lor Q(x))$ (Premise)

2. $P(c) \lor Q(c)$ for an arbitrary *c* in the domain (Universal instantiation of 1)

3. $\forall x((\neg P(x) \land Q(x)) \rightarrow R(x))$ (Premise) 4. $(\neg P(c) \land Q(c)) \rightarrow R(c)$ for an arbitrary *c* in the domain (Universal instant. of 3) 5. $\neg(\neg P(c) \land Q(c)) \lor R(c)$ for an arbitrary *c* in ... (Using $p \rightarrow q \equiv \neg p \lor q$ on 4) 6. $(P(c) \lor \neg Q(c)) \lor R(c)$ for an arbitrary *c* in the domain (De Morgan's law on 5) 7. $(\neg Q(c) \lor P(c)) \lor R(c)$ for an arbitrary *c* in the domain (Commutative law on 6) 8. $\neg Q(c) \lor (P(c) \lor R(c))$ for an arbitrary *c* in the domain (Associative law on 7) 9. $Q(c) \lor P(c)$ for an arbitrary *c* in the domain (Commutative law on 2) 10. $P(c) \lor (P(c) \lor R(c))$ for an arbitrary *c* in the domain (Resolution on 8 and 9) 11. $(P(c) \lor P(c)) \lor R(c)$ for an arbitrary *c* in the domain (Associative law on 10) 12. $P(c) \lor R(c)$ for an arbitrary *c* in the domain (Idempotent law on 11) 13. $R(c) \lor P(c)$ for an arbitrary *c* in the domain (Commutative law on 12) 14. $\neg R(c) \rightarrow P(c)$ for an arbitrary *c* in the domain (Using $p \rightarrow q \equiv \neg p \lor q$ on 13) 15. $\forall x (\neg R(x) \rightarrow P(x))$ (Universal generalization of 14)